Utterance Classification In AutoTutor
نویسندگان
چکیده
This paper describes classification of typed student utterances within AutoTutor, an intelligent tutoring system. Utterances are classified to one of 18 categories, including 16 question categories. The classifier presented uses part of speech tagging, cascaded finite state transducers, and simple disambiguation rules. Shallow NLP is well suited to the task: session log file analysis reveals significant classification of eleven question categories, frozen expressions, and assertions.
منابع مشابه
Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملAutoTutor: A simulation of a human tutor
AutoTutor is a computer tutor that simulates the discourse patterns and pedagogical strategies of a typical human tutor. AutoTutor is designed to assist college students in learning the fundamentals of hardware, operating systems, and the Internet in an introductory computer literacy course. Most tutors in school systems are not highly trained in tutoring techniques and have only a modest exper...
متن کاملGnuTutor: An Open Source Intelligent Tutoring System Based on AutoTutor
This paper presents GnuTutor, an open source intelligent tutoring system (ITS) inspired by the AutoTutor ITS. The goal of GnuTutor is to create a freely available, open source ITS platform that can be used by schools and researchers alike. To achieve this goal, significant departures from AutoTutor’s current design were made so that GnuTutor would use a smaller, non-proprietary code base but ha...
متن کاملDetection of Emotions during Learning with AutoTutor
The relationship between emotions and learning was investigated by tracking the affective states that college students experienced while interacting with AutoTutor, an intelligent tutoring system with conversational dialogue. An emotionally responsive tutor would presumably facilitate learning, but this would only occur if learner emotions can be accurately identified. After a learning session ...
متن کاملMaking AutoTutor Agents Smarter: AutoTutor Answer Clustering and Iterative Script Authoring
AutoTutor uses conversational intelligent agents in learning environments. One of the major challenges in developing AutoTutor applications is to assess students’ natural language answers to AutoTutor questions. We investigated an AutoTutor dataset with 3358 student answers to 49 AutoTutor questions. In comparisons with human ratings, we found that semantic matching works well for some question...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003